Energie-Begriff        zurück ]      [ Stichworte ]      [ Literatur ]      [ Die Hyper-Bibliothek ]      [ Systemtheorie ]         [ Meine Bücher ]
 

Homonyme: physikalische Energie  -  verbrauchbare Energie  -  feinstoffliche Energie  -   kybernetische Energie

Terminologische gebunden (etwa in meiner Physik) verwende ich den Ausdruck "Energie" - wie etwa den Ausdruck "Länge" - als Bezeichnung für eine Grösse. Was ich über Energie sagen kann, kann ich also deshalb sinngemäss auch über Länge sagen. Operativ verstehe ich jede Grösse Hypostasierung einer Messung. Energie messe ich, indem ich messe, wieviel Masse ich gegen eine Kraft bewegen kann (wobei Masse und Kraft auch Grössen bezeichnen).

Umgangssprachlich wird das Wort Energie sehr verschieden verwendet. Als "Energia" ist das Wort so alt wie die alten Griechen, die es irgendwie komplementär zu "Wirkung" verwendet haben, was in allen umgangssprachlichen Formen des Ausdruckes Energie diffus nachschwingt.
Im unserem Alltag ist hauptsächlich vom Energieverbrauch die Rede. Dabei interessiert gerade nicht, was Energie sein könnte, sondern welche Maschinen für wieviel Geld betrieben werden können. In einer verkürzten Redeweise wird dann beispielsweise Erdöl als Energie bezeichnet, weil es zum Autofahren oder Heizen benutzt werden kann. Mit Erdöl kann ich eine Kraftmaschine, also einen Motor antreiben. Dabei verbrauche ich Erdöl. Das, was in diesem umgangssprachlichen Sinn als Energie bezeichnet wird, bezeichne ich als Energieträger.
Die Entwicklung des neuzeitlich-physikalischen Energie-Begriffes begann um 1800, zuerst wurde der Ausdruck "Energie" von Thomas Young verwendet, wichtig wurde er durch die Arbeiten von Nicolas Carnot. Vorher wurde von "Kraft" gesprochen, also die Unterscheidung zwischen Kraft und Energie noch nicht explizit verwendet.

Geschichte des Begriffs

Wikipedia
Viele Denker befassten sich mit der Umwandlung von kinetischer in potentielle Energie bei einer Pendelschwingung (unter anderem Galileo Galilei, Christiaan Huygens, Evangelista Torricelli und Gottfried Wilhelm Leibniz). Ergebnis war, dass kinetische und potentielle Energie eine identische Größe haben mussten. Leibniz – und später auch Immanuel Kant - formulierte das Prinzip von der Erhaltung der Kraft.
Die neuzeitliche Bezeichnung Energie geht wohl auf Thomas Young zurück, der um 1800 für Energie noch einen rein mechanischen Zusammenhang gebrauchte. Im Zusammenhang mit der Dampfmaschine entwickelte sich die Vorstellung, dass Wärmeenergie bei vielen Prozessen die Ursache für eine bewegende Energie, oder mechanische Arbeit verantwortlich ist. Ausgangspunkt war, dass Wasser durch Hitze in den gasförmigen Zustand überführt wird und die Gasausdehnung genutzt wird, um einen Kolben in einem Zylinder zu bewegen. Durch die Kraftbewegung des Kolbens vermindert sich die gespeicherte Wärmeenergie des Wasserdampfes.

Das Wort Energie geht auf altgriechisch ἐνέργεια, energeia zurück, das in der griechischen Antike eine rein philosophische Bedeutung im Sinne von lebendiger Wirklichkeit und Wirksamkeit hatte (siehe auch „Akt und Potenz“).
Als naturwissenschaftlicher Begriff wurde das Wort selbst erst 1807 von dem Physiker Thomas Young in die Mechanik eingeführt. Die neue Größe Energie sollte die Stärke ganz bestimmter Wirkungen angeben, die ein bewegter Körper durch seine Bewegung hervorrufen kann, und die sich nicht allein durch seinen Impuls m v („Masse mal Geschwindigkeit“) bestimmen lassen. Über den Impuls war seit den Untersuchungen des Stoßes zweier Körper durch Christiaan Huygens, Christopher Wren und John Wallis um das Jahr 1668 herum bekannt, dass er bei elastischen wie bei unelastischen Körpern erhalten bleibt, also das richtige Maß für die verursachten Veränderungen und damit für die unzerstörbare „Größe der Bewegung“ ist. Bei anderen Vorgängen aber verursachen Körper verschiedener Masse, auch wenn sie gleichen Impuls haben, verschieden große Wirkungen. Dazu gehört etwa die Höhe, die ein Körper in Aufwärtsbewegung erreicht, oder die Tiefe des Lochs, das er beim Aufprall in eine weiche Masse schlägt. Hierbei nimmt die Wirkung nicht mit der Geschwindigkeit proportional zu, wie der Impuls, sondern mit dem Quadrat der Geschwindigkeit. Daher bezeichnete Gottfried Wilhelm Leibniz 1686 die Größe m v 2 als das wahre Maß für die Größe der Bewegung und nannte sie vis viva („lebendige Kraft“). Dieser Name folgte dem damaligen Sprachgebrauch, in dem ein Körper nur durch die ihm innewohnenden Kräfte Wirkungen verursachen konnte. Der Name lebendige Kraft hat aber durch „Verwechslung mit dem Newtonschen Kraftbegriff eine unheilvolle Verwirrung der Ideen und eine zahllose Schar von Missverständnissen hervorgerufen“ (so Max Planck 1887 in seiner preisgekrönten Darstellung der Geschichte des Energieerhaltungssatzes.) Leibniz argumentierte wie folgt:

Ein Gewicht von m auf die Höhe 4 h zu heben erfordert genauso viel Arbeit wie ein Gewicht 4 m auf die Höhe h zu heben (Hebelgesetz). Nach Galileo Galilei ist im freien Fall v ∼ h , also ist die Endgeschwindigkeit im ersten Fall doppelt so hoch wie im zweiten Fall. Setzt man für die innewohnende (lebendige) Kraft an m f ( v ), mit der man diese Arbeit (latente Form der lebendigen Kraft) messen will, so ist bei Erhaltung der lebendigen Kraft m f ( 2 v ) = 4 m f ( v ), das heißt f ( v ) = v 2 und nicht f ∼ v wie die Anhänger von Descartes meinten.

Den korrekten Vorfaktor 1 2 in der kinetischen Energie leitete schon Daniel Bernoulli 1726 ab. Bei ihm wie bei anderen analytischen Mechanikern des 18. Jahrhunderts wie Leonhard Euler (z. B. Behandlung der elastischen Deformation), Joseph Louis Lagrange (Mécanique Analytique 1788) finden sich auch Vorläufer des Konzepts der potentiellen Energie (der Term Potentialfunktion stammt von George Green 1828 und unabhängig wurde sie von Carl Friedrich Gauß 1840 eingeführt, war aber als Potential schon Lagrange und Laplace bekannt). Das Konzept war schon Leibniz (in seiner Ableitung von m v 2 und dessen Anhänger Johann Bernoulli bekannt, der als erster 1735 das Prinzip der Erhaltung der lebendigen Kräfte formulierte (die Vorstellung hatte aber auch Leibniz zum Beispiel im 5. Brief an Samuel Clarke), das insbesondere vom Leibniz-Schüler Christian Wolff verbreitet wurde. Von potentieller Energie sprach man damals als der latenten Form der lebendigen Kraft, die sich zum Beispiel beim inelastischen Stoß auf kleinere Teilchen des Körpers verteile.

Um die genannten Wirkungen der Bewegung des Körpers vorhersagen zu können, definierte Young die Größe Energie als die Fähigkeit des Körpers, gegen eine widerstehende Kraft eine gewisse Strecke zurückzulegen. Er bemerkte auch, dass Arbeit, die in Form von Hubarbeit an einem Körper geleistet wird, sich später quantitativ in dessen Energie wiederfindet, kam aber noch nicht auf den Begriff der Umwandlung verschiedener Energieformen und behielt auch die Formel m v 2 von Leibniz bei und war im Großen und Ganzen noch ein Anhänger des Cartesianischen Standpunkts der Kräfte.

Im 18. Jahrhundert war man in der Mechanik und Physik an der Energie nicht sonderlich interessiert, wichtige Forscher wie Euler sahen den Streit um die Vis Viva, das wahre Kraftmaß, als Angelegenheit der Philosophen und man befasste sich mit der Lösung der Bewegungsgleichungen vor allem in der Himmelsmechanik. Der Energiebegriff im heutigen Sinn fand seinen Ursprung nicht bei den analytischen Mechanikern des 18. Jahrhunderts, sondern bei den angewandten Mathematikern der französischen Schule, darunter Lazare Carnot, der schrieb, dass die lebendige Kraft sich entweder als m v 2 oder Kraft mal Weg (als latente lebendige Kraft) manifestieren kann. Eine quantitative Definition der Arbeit („Kraft mal Weg“, bzw. ∫ F → ⋅ d → s wurde auch 1829 gleichzeitig von Coriolis und Poncelet gegeben, offenbar unabhängig voneinander und auch von Young. Coriolis fand dabei auch den richtigen Ausdruck 1 2 m v 2 für die Bewegungsenergie, die 1853 von Rankine erstmals kinetische Energie genannt wurde.

Im Zusammenhang mit der Dampfmaschine entwickelte sich die Vorstellung, dass Wärmeenergie bei vielen Prozessen die Ursache für eine bewegende Energie, oder mechanische Arbeit verantwortlich ist. Ausgangspunkt war, dass Wasser durch Hitze in den gasförmigen Zustand überführt wird und die Gasausdehnung genutzt wird, um einen Kolben in einem Zylinder zu bewegen. Durch die Kraftbewegung des Kolbens vermindert sich die gespeicherte Wärmeenergie des Wasserdampfes. Demonstriert wurde der Zusammenhang von mechanischer Energie und Wärme in berühmt gewordenen Experimenten von Benjamin Thompson (Graf Rumford, München 1796, 1798) und Humphry Davy (1799).

Der Physiker Nicolas Carnot erkannte, dass beim Verrichten von mechanischer Arbeit eine Volumenänderung des Dampfs nötig ist. Außerdem fand er heraus, dass die Abkühlung des heißen Wassers in der Dampfmaschine nicht nur durch Wärmeleitung erfolgt. Diese Erkenntnisse veröffentlichte Carnot 1824 in einer viel beachteten Schrift über das Funktionsprinzip der Dampfmaschine. Émile Clapeyron brachte 1834 Carnots Erkenntnisse in eine mathematische Form und entwickelte die noch heute verwendete graphische Darstellung des Carnot-Kreisprozesses.

1841 veröffentlichte der deutsche Arzt Julius Robert Mayer seine Idee, dass Energie weder erschaffen noch vernichtet, sondern nur umgewandelt werden kann. Er schrieb an einen Freund: „Meine Behauptung ist …: Fallkraft, Bewegung, Wärme, Licht, Elektrizität und chemische Differenz der Ponderabilien sind ein und dasselbe Objekt in verschiedenen Erscheinungsformen.“ Die Wärmemenge, die bei einer Dampfmaschine verloren gegangen ist, entspräche genau der mechanischen Arbeit, die die Maschine leistet. Dies ist heute bekannt als „Energieerhaltung“, oder auch „Erster Hauptsatz der Thermodynamik“. Der Physiker Rudolf Clausius verbesserte im Jahr 1854 die Vorstellungen über die Energieumwandlung. Er zeigte, dass nur ein Teil der Wärmeenergie in mechanische Arbeit umgewandelt werden kann. Ein Körper, bei dem die Temperatur konstant bleibt, kann keine mechanische Arbeit leisten. Clausius entwickelte den zweiten Hauptsatz der Thermodynamik und führte den Begriff der Entropie ein. Nach dem zweiten Hauptsatz ist es unmöglich, dass Wärme eigenständig von einem kälteren auf einen wärmeren Körper übergeht.

Hermann von Helmholtz formulierte im Jahr 1847 das Prinzip „über die Erhaltung der Kraft“ und der Unmöglichkeit eines Perpetuum mobiles (perpetuus, lat. ewig; mobilis, lat.: beweglich) 1. Art. Viele Erfinder wollten damals noch Maschinen herstellen, die mehr Energie erzeugten als hineingesteckt wurde. Helmholtz fand seine Erkenntnisse durch Arbeiten mit elektrischer Energie aus galvanischen Elementen, insbesondere einer Zink/Brom-Zelle. In späteren Jahren verknüpfte er die Entropie und die Wärmeentwicklung einer chemischen Umwandlung zur freien Energie. Sowohl Mayer als auch Helmholtz hatten aber in den 1840er Jahren Schwierigkeiten, ihre Erkenntnisse zu veröffentlichen, da beide zunächst als fachfremde Außenseiter galten und die Physiker in Deutschland in einer Abwehrhaltung gegen die seit Ende des 18. Jahrhunderts einflussreiche Naturphilosophie des Kreises um Schelling waren und man beide verdächtigte Anhänger dieser spekulativen Physik zu sein.

Josiah Gibbs kam im Jahr 1878 zu ähnlichen Erkenntnissen wie Helmholtz bei elektrochemischen Zellen. Chemische Reaktionen laufen nur ab, wenn die Freie Energie abnimmt. Mittels der freien Energie lässt sich voraussagen, ob eine chemische Stoffumwandlung überhaupt möglich ist oder wie sich das chemische Gleichgewicht einer Reaktion bei einer Temperaturänderung verhält.

Das Wort Energie wurde 1852 von dem schottischen Physiker William Rankine im heutigen Sinn in die Physik entsprechend der oben erwähnten altgriechischen Bedeutung eingeführt (ἐν = in, innen und ἔργον = Werk, Wirken). Damit gelang eine saubere Abgrenzung zum Begriff der Kraft. Aufbauend auf Überlegungen von Wilhelm Wien (1900), Max Abraham (1902), und Hendrik Lorentz (1904) veröffentlichte Albert Einstein 1905 die Erkenntnis, dass Masse und Energie äquivalent sind.


 
[wp]