Elektrodynamik        zurück ]      [ Stichworte ]      [ Die Hyper-Bibliothek ]      [ Systemtheorie ]         [ Meine Bücher ]

Als Elektrodynamik bezeichne ich ein Teilgebiet der Physik, in welchem elektrischen Ladungen und elektromagnetische Felder behandelt werden.

Der Name Elektrodynamik anstelle von Elektrizitätslehre ....

Sie beschäftigt sich mit elektrischen Ladungen, elektrisch geladenen Körpern, dem Magnetismus, elektrischen Strömen und deren Wirkungen, den Gesetzen in elektrischen Stromkreisen, der Erzeugung und Umformung elektrischer Energie, elektrischen Schaltungen und Bauelementen sowie den elektromagnetischen Schwingungen und ... kkkkkkk Die Elektrostatik ist ein Spezialfall der Elektrodynamik für unbewegte elektrische Ladungen und stationäre, d. h. zeitlich gleichbleibende elektrische Felder kkkkkkkkk Elektrodynamik und Optik Nach James Clerk Maxwell sind die bekannten Maxwell-Gleichungen des Elektromagnetismus benannt → Hauptartikel: Elektrodynamik → Hauptartikel: Optik In der Elektrodynamik werden Phänomene mit bewegten elektrischen Ladungen in Wechselwirkung mit zeitlich veränderlichen elektrischen und magnetischen Feldern beschrieben. Um die Entwicklung der Theorien der Elektrizität und des Magnetismus im 18. und 19. Jahrhundert zusammenzuführen, wurde eine Erweiterung des Theoriengebäudes der klassischen Mechanik notwendig. Ausgangspunkt war das von Michael Faraday entdeckte Induktionsgesetz und die nach Hendrik Antoon Lorentz benannte Lorentzkraft auf eine bewegte elektrische Ladung in einem Magnetfeld. Die Gesetze der Elektrodynamik wurden im 19. Jahrhundert von James Clerk Maxwell zusammengefasst und in Form der Maxwell-Gleichungen erstmals vollständig formuliert. Grundsätzlich wurden elektrodynamische Systeme mit den Methoden der klassischen Mechanik behandelt, allerdings ermöglichen die Maxwell-Gleichungen auch eine Wellenlösung, die elektromagnetische Wellen wie das Licht beschreiben. Diese Theorie brachte unter anderem in Form der Wellenoptik auch einen eigenen Formalismus hervor, der sich grundlegend von dem der klassischen Mechanik unterscheidet. Besonders die Symmetrien der Elektrodynamik sind mit denen der klassischen Mechanik unvereinbar. Dieser Widerspruch zwischen den beiden Theoriegebäuden wurde durch die spezielle Relativitätstheorie gelöst. Die Wellenoptik ist in Form der nichtlinearen Optik noch heute (2011) ein aktives Forschungsgebiet. kkkkkkkkkkkkkkkkkkkkk elektromagnetische_wechselwirkung.htm

Elektromagnetische Welle []

Das alltägliche, vertrauteste Beispiel einer elektromagnetischen Welle ist sichtbares Licht. Ebenfalls eine natürliche, alltägliche Erscheinung elektromagnetischer Wellen ist die unsichtbare Wärmestrahlung, das so genannte «Infrarot», sowie das ebenfalls unsichtbare Ultraviolett. Diese natürlich entstehenden Formen elektromagnetischer Wellen können für spezielle Zwecke auch künstlich erzeugt und technisch genutzt werden, ebenso wie Radiowellen, darunter insbesondere Radarwellen, ferner Mikrowellen, Röntgenstrahlung und Gammastrahlung.

Unterschieden werden mechanische Wellen, die stets an ein Medium gebunden sind, und Wellen, die sich auch im Vakuum ausbreiten können (beispielsweise elektromagnetische Wellen). Sie pflanzen sich im Vakuum unabhängig von ihrer Frequenz mit Lichtgeschwindigkeit fort.

=========== Elektromagnetische Wellen, auch elektromagnetische Strahlung oder Strahlung sind Wellen aus gekoppelten elektrischen und magnetischen Feldern. Beispiele für elektromagnetische Wellen sind Radiowellen, Mikrowellen, Wärmestrahlung, Licht, Röntgenstrahlung und Gammastrahlung. Elektromagnetische Wellen im Vakuum sind Transversalwellen. Die Wechselwirkung elektromagnetischer Wellen mit Materie hängt von ihrer Frequenz ab, die über viele Größenordnungen variieren kann. =============== Fundamentale Wechselwirkung (Weitergeleitet von Grundkräfte der Physik) Zur Navigation springen Zur Suche springen Eine fundamentale Wechselwirkung ist einer der grundlegend verschiedenen Wege, auf denen physikalische Objekte (Körper, Felder, Teilchen, Systeme) einander beeinflussen können. Es gibt die vier fundamentalen Wechselwirkungen Gravitation, Elektromagnetismus, schwache Wechselwirkung und starke Wechselwirkung. Sie werden auch als die vier Grundkräfte der Physik oder als Naturkräfte bezeichnet. Einzeln oder in Kombination bringen die vier fundamentalen Wechselwirkungen sämtliche bekannten physikalischen Prozesse hervor, seien es Prozesse zwischen Elementarteilchen oder zwischen Materie und Feldern in makroskopischen Ausmaßen, sei es auf der Erde, in Sternen oder im Weltraum. Weitere Arten von Wechselwirkungen scheinen zur Beschreibung der Natur nicht erforderlich; gelegentlich aufgestellte Hypothesen über eine „fünfte Kraft“, die zur Erklärung bestimmter Beobachtungen nötig wäre, konnten nicht bestätigt werden. Andererseits ist es bisher auch nicht gelungen, die Vielfalt der beobachteten Vorgänge mit weniger als vier fundamentalen Wechselwirkungen zu erklären. Allerdings ist anzumerken, dass dieses einfache Bild, das etwa um die Mitte des 20. Jahrhunderts herausgearbeitet wurde, nach neueren Entwicklungen zu modifizieren ist: Zwei der vier Wechselwirkungen (die elektromagnetische und die schwache Wechselwirkung) werden im heutigen Standardmodell der Elementarteilchenphysik aus einer gemeinsamen Grundlage hergeleitet, die den Namen elektroschwache Wechselwirkung trägt. Daher wird zuweilen von insgesamt nur drei fundamentalen Wechselwirkungen gesprochen. Andererseits enthält das Standardmodell das neuartige Higgs-Feld, das durch eine besondere Art der Wechselwirkung den zunächst als masselos angesetzten Fermionen, z. B. den Elektronen, ihre Masse verleiht. Diese Wechselwirkung wird jedoch bisher (Stand 2017) gewöhnlich nicht als fünfte fundamentale Wechselwirkung bezeichnet. ======================= (Weitergeleitet von Elektromagnetismus) Elektromagnetismus .................................... Die klassische Elektrodynamik (auch Elektrizitätslehre) ist das Teilgebiet der Physik, das sich mit bewegten elektrischen Ladungen und mit zeitlich veränderlichen elektrischen und magnetischen Feldern beschäftigt. Die Elektrostatik als Spezialfall der Elektrodynamik beschäftigt sich mit ruhenden elektrischen Ladungen und ihren Feldern. Die zugrundeliegende Grundkraft der Physik heißt elektromagnetische Wechselwirkung. Die Theorie der klassischen Elektrodynamik wurde von James Clerk Maxwell Mitte des 19. Jahrhunderts mithilfe der nach ihm benannten Maxwell-Gleichungen formuliert. Die Untersuchung der Maxwellgleichungen für bewegte Bezugssysteme führte Albert Einstein 1905 zur Formulierung der speziellen Relativitätstheorie. Im Laufe der 1940er Jahre gelang es, die Quantenmechanik und Elektrodynamik in der Quantenelektrodynamik zu kombinieren; deren Vorhersagen stimmen mit Messergebnissen sehr genau überein. Eine wichtige Form von elektromagnetischen Feldern sind die elektromagnetischen Wellen, zu denen als bekanntester Vertreter das sichtbare Licht zählt. Dessen Erforschung bildet ein eigenes Gebiet der Physik, die Optik. Die physikalischen Grundlagen der Beschreibung elektromagnetischer Wellen liefert jedoch die Elektrodynamik. ==============
 
[Elektromagnetisches Spektrum]
[wp]